
InterferenceAnalyzer: Tools for the Analysis and Simulation
of Multi-Locus Genetic Data

Lalitha Viswanath1, Elizabeth A. Housworth∗2

1School of Informatics, Indiana University, Bloomington, Indiana, 47405
2Departments of Mathematics and Biology, Indiana University, Bloomington, Indiana, 47405

Email: Lalitha Viswanath - lviswana@indiana.edu; Elizabeth A. Housworth∗- ehouswor@indiana.edu;

∗Corresponding author

Abstract

Background: Good statistical models for analyzing and simulating multilocus recombination data exist but are

not accessible to many biologists because their use requires reasonably sophisticated mathematical and

computational implementation. While some labs have direct access to statisticians or programmers competent

to carry out such analyses, many labs do not. We have created a platform independent application with an

easy-to-use graphical user interface that will carry out such analyses including the simulations needed to

bootstrap confidence intervals for the parameters of interest. This software should make multi-locus techniques

accessible to labs that previously relied on less powerful and potentially statistically confounded single interval or

double interval techniques.

Results: We introduce InterferenceAnalyzer, an implementation with a user-friendly graphical interface

incorporating previously developed algorithms for the analysis and simulation of multilocus recombination data.

We demonstrate the use and features of the program with an example of multilocus tetrad data from the

mustard plant, Arabidopsis thaliana and the yeast, Saccharomyces cerevisiae.

Conclusions: InterferenceAnalyzer provides easy access to the powerful and appropriate statistical tools for the

multi-locus analysis of genetic data.
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Background

One type of data collected and used by geneticists involves the scoring of markers in a genetic cross of two

parents whose markers are known. Such data are used to create genetic maps, associate markers with traits

of interest, and to study recombination. For some organisms such as yeast and Arabidopsis, all four

products of meiosis can be scored giving rise to tetrad data. Assuming the order of the markers is known

or has been inferred, the geneticist can look at adjacent marker patterns and determine if the tetrad has

parental ditype, tetratype, or non-parental ditype configuration for the interval. See Figure 1. The

simplest explanation for parental ditype is that there are no crossovers in the interval. Similarly, the

simplest explanation for tetratype and non-parental ditype patterns are one and two crossovers in the

interval, respectively. However, two crossovers in an interval can lead to any of the three possible patterns

(parental ditype, tetratype, and non-parental ditype). Under the assumption that the pair of parental

strands involved in the crossover is chosen independently for each of the two crossovers (the no chromatid

interference assumption), the respective probabilities of these three outcomes are 1/4, 1/2, and 1/4. The no

chromatid interference assumption has been supported statistically in most of the experiments where the

matter was considered [1, 2] and the general formula for the conditional probability of observing any

particular tetrad pattern (parental ditype, tetratype, or nonparental ditype) in an interval given the

number of crossovers was worked out by Mather in 1935 [3].

The placement of crossovers along the tetrad, however, often does show crossover interference; that is, a

crossover discourages another one from occurring nearby. Crossover interference has been observed in

many organisms including fruit flies [4–7], yeast [2, 8, 9], bread mold [4, 10], mice [11], humans [12,13], and

green plants such as Arabidopsis [14,15]. The only successful statistical model for crossover interference is

the counting or Chi-Square model whose mathematical formulation dates back to Payne in 1956 [16] and

which was given an elegant formulation in a text of Bailey as the segmental calculus in 1961 [17]. If the

crossovers were distributed at random, the spacing between them would be exponential, which is equivalent

to the scaled Chi-Square distribution 1
2χ2

2. If the spacing between crossovers is the sum of two exponential

random variables, then the distribution is the scaled Chi-Square distribution 1
4χ2

4. In general, if the spacing

between crossovers is the sum of m + 1 exponential random variables, then the distribution is

1
2(m+1)χ

2
2(m+1). The model gained biological credibility when Foss et al. [4] proposed that the double

strand breaks that initiate recombination events were distributed at random but only every m + 1st one

was resolved as a crossover, the intervening ones being resolved with noncrossovers (i.e., simple gene

conversions unaccompanied by crossing over.) The number of noncrossovers between pairs of crossovers, m,
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is known as the interference parameter. The counting model has been shown repeatedly to fit genetic data

well, both statistically and graphically, and provides a substantially better fit than other statistical models

of interference [4, 6, 7, 11,12].

The mathematical details of the use of the segmental calculus for analyzing tetrad data under the counting

model and for the extension of the counting model to include an independent subset of crossovers not

subject to interference, which provides a better fit to data from Arabidopsis, humans, and yeast, can be

found in [7, 14]. The basic idea is to use matrices to keep track of the number of noncrossovers to the left

(rows) and to the right (columns) of the first and last crossovers in the interval, respectively. The

dimensions of the matrices required in the analysis are (m + 1)× (m + 1) where m is the interference

parameter. The estimate of m is chosen to maximize the statistical likelihood function the data.

Calculating the likelihood function involves summing over all possible patterns for the relative positions of

the crossovers among the noncrossovers, which is accomplished by the multiplication of matrices that are

determined for each interval and each tetrad pattern (parental ditype, tetratype, and nonparental ditype).

In the case of the extended model, we also have to sum over all the possibilities for the number of

crossovers that are non-interfering. The estimates of m (the interference parameter) and p (the proportion

of crossovers not subject to interference) are chosen jointly to maximize the likelihood function of the data.

Since the interference parameters in some organisms can be quite large, the numerical optimization for

either model can be quite time-consuming. We save some computational time by using the formula of

Perkins [10] for estimating the intermarker distances rather than using maximum likelihood to estimate

these values. For most practical applications, the maximum likelihood estimates and the Perkins estimates

will be close.

Implementation

InterferenceAnalyzer is written in Java. The original source code and executable .jar files are available for

Windows, Linux, and MacOS. The application is also available as a Windows executable. The source code,

executables, sample data sets, and sample results are available at

http://mypage.iu.edu/∼ehouswor/InterferenceAnalyzer.

Results

We demonstrate how to use the software to analyze a specific dataset, use simulations to give confidence

intervals for parameter estimates and assess the significance of the fit of the extended counting model, and
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discuss the relative speed of our software compared to comparable SAS code.

Raw Data Analysis

Genetic data must be in tab-delimited format and stored as a text file. The first two lines specify the

parental marker values. The next four lines specify the values for the first tetrad, the four lines after that

specify the values for the second tetrad, etc... The file must end with one (and only one) carriage return

after the last line of data. Any symbol may be used to specify the parental values for the markers.

Common possibilities include the use of the numbers 0 and 1, the use of the symbols + and -, or marker

names such as URA and ura. An example of the first 6 lines of two of the common types of codings is

provided in Table 1. Note that the first tetrad in the second data set contains entries indicating that the

second marker could not be properly scored. Tetrads with entries that match neither parental type or with

entries that indicate that a gene conversion occurred at a marker (that is, with 3 or 4 entries for a marker

in the tetrad corresponding to the genotype of just one parent) are discarded from the analysis.

The file containing the data is uploaded to the software using the “Load File” button on the “Analyze Raw

Data” tab of the software. The user may decide to analyze the data only under the original counting model,

only under the extended model which allows for a portion of the crossovers to be free from interference, or

under both models by checking the appropriate buttons. After the user clicks on the “Analyze” button, a

progress bar displays. The progress bar allows the user to know that the program is running but is not a

good measure of the time remaining because it is linked to the current value of the interference parameter,

m, which is allowed to run from 0 to 20. It takes much longer to calculate the likelihood for larger values of

m than for smaller ones but the program terminates as soon as the peak of the likelihood function has been

reached and so often does not reach the larger values allowed for m. There is no linear measure available

for the time remaining to complete the calculation of the maximum likelihood estimator.

The results are displayed and buttons that allow exporting the results and the intermarker distances to

files for use later are displayed. Exporting the intermarker distances is highly recommended in order to be

able to use the simulations panel to give confidence intervals for the parameters and assess the significance

of the extended model over the original counting model.

A picture of this panel of the software is given in Figure 2. The data used for this analysis are the raw

tetrad patterns for Arabidopsis chromosome 3 originally analyzed in [14]. Under the original counting

model the results show that the estimate of the interference parameter is m = 3. Under the extended

model, the interference parameter estimate can only increase because the extended model removes a
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portion of non-interfering crossovers. For the extended model, the results are that the interference

parameter is m = 14 and the proportion of non-interfering crossovers is p = 0.204. The log likelihood ratio,

used below to calculate the significance of the increase in fit provided by the extended model, can be

calculated as the difference in the log likelihoods provided: 224.0− 215.5 = 8.5.

Use of simulations

The analysis of the original tetrad data discussed in the previous section gives point estimates for the

interference parameter, m, in the counting model and the interference parameter, m, and the proportion of

crossovers that are free of interference, p, in the extended model. Interval estimates can come from using

the asymptotic normality of the maximum likelihood estimators and Fisher’s Information function or via

simulations. Simulations are more appropriate with small datasets and with large estimates of m because

the distribution of the maximum likelihood estimators tend not to be close to normally distributed. Also,

while we can form the standard likelihood ratio test statistic for determining how much better the extended

model fits the data than the original counting model, the null hypothesis that the original counting model is

an adequate model for the data is on the boundary of the parameter space (p = 0). Thus, the distribution

of the usual likelihood ratio test statistic need not be approximately Chi-Square and simulations are

needed to accurately assess the significance of the hypothesis that the extended model fits the data better.

Confidence intervals for parameter estimates

For the Arabidopsis data, the extended model estimate of the interference parameter was m = 14 and the

estimate of the proportion of crossovers free from interference was p = 0.20. To place confidence intervals

around these estimates, we use these parameter estimates from the original data analysis and the estimates

of the intermarker genetic distances obtained from the original data using Perkins’s formula to simulate

new data sets. In each simulated data set, we re-estimate the model parameters m and p. The variation we

see in these estimates reflect our uncertainty in the original parameter estimates. If, for each parameter, we

place the simulated values in order and extract the 2.5 and 97.5 percentiles, we obtain the 95% percentile

bootstrap confidence interval.

To use the Simulations panel for this purpose, we would load the file containing our intermarker distances,

enter the number of tetrads in our original data set (57) in the “Sample Size” textbox, choose m = 14 and

enter 0.20 in the textbox for p, and uncheck the box for analyzing the data using the original counting

model since we are not interested in those results.
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We give the results for 5 simulations in Table 2. These results demonstrate the limitations of simulations

to provide confidence intervals for the interference parameter when that parameter is large and the sample

size is small. The largest value for m allowed in the program is 20 and the analysis of the data when m is

large takes an extremely long time. These 5 simulations took approximately 35 minutes on a Dell

LATITUDE C840 (Intel Pentium 4 processor) with 1.60 GHz CPU and 1 GB Ram. Also, the maximum

likelihood estimate for m for the simulated data reached and was truncated at 20 twice in these five

simulations. Thus, it is not computationally feasible to place accurate, bounded, confidence intervals

around the interference parameter when m is large and the sample size is relatively small. Further, the

confidence intervals around the proportion of non-interfering crossovers, p, is likely to be slightly biased

due to the truncation of the interference parameter at m = 20.

Since data sets from yeast avoid these problems, we include a set of yeast data generated in the Stahl Lab

and analyzed in [2]. The sample size is large (1783 tetrads) and the interference parameter estimates are

relatively small (m = 3 for the extended model). The estimates for the model parameters for the extended

model for the original data set were m = 3 and p = 0.088. Two hundred simulations of data sets of 1783

tetrads using these parameter estimates for m and p took approximately eight hours on a Macintosh 1.5

GHz PowerPC G4 laptop computer with 1 GB DDR SDRAM. After exporting the results, opening them in

a spreadsheet program, and sorting the data by the interference parameter estimate under the extended

model, pulling off the 5th and 195th values gives a 95% percentile bootstrap confidence intervals for m of

[3, 4]. Similarly, sorting the data by the proportion of non-interfering crossovers, p, and pulling off the 5th

and 195th values gives a 95% percentile bootstrap confidence interval for p of (0.058, 0.135).

Assessment of the significance of the fit of the extended model

For the Arabidopsis data set, we assess the significance of the fit of the extended model by simulating data

under the best fitting original counting model (the null hypothesis of the test of whether the extended

model fits better or not). Since the estimate of the interference parameter for the original counting model

is m = 3, the simulations are feasible. We then analyze the simulated data sets under both models. Figure

3 shows the output and the “Export Results” button located at the bottom of the results panel. To

determine the significance of the fit of the extended model to these data, the researcher would calculate the

difference between the likelihoods of the counting model and extended model for the original data:

224.0− 215.5 = 8.5. The researcher would then open the simulation results in a spreadsheet program,

calculate a column of such differences (one for every simulation), sort that column, and determine what
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proportion of the differences are greater than that of the observed data (in this case, 8.5). In our 200

simulations, no difference was greater, so our best estimate of the significance is 0/200. This significance

level indicates that the extended model provides a much better fit to the original data than the original

counting model does.

Performance

The intermarker distances for the Arabidopsis data used in our worked example are [0.149, 0.228, 0.132,

0.061, 0.167, 0.219, 0.175]. For 200 simulations with m = 3 and p = 0 analyzed under both the original

counting model and its extension to include a proportion of noninterfering crossovers, InterferenceAnalyzer

took approximately 1 hour on a Dell LATITUDE C840 (Intel Pentium 4 processor) with 1.60 GHz CPU

and 1 GB Ram whereas the equivalent code in SAS took approximately 16 hours. Thus, the Java program

seems to be approximately 16 times faster than similar code in SAS on the same computer.

Discussion

The development of InferferenceAnalyzer should make the powerful multilocus techniques for assessing

interference accessible to geneticists. Future development planned includes allowing for the analysis of

spore data where only one product of meiosis is observed, allowing for analysis when positions of the

crossovers along a tetrad or spore are known using the algorithms in [12,13], and the inclusion of the

ability to simulate data under the mechanical stress model for crossover interference [18]. While the

mechanical model does a good job approximating the observed interference patterns in real data, it is not a

statistical model and its best fitting parameter values cannot be obtained feasibly from data. Thus our

software will not be able to fit the mechanical model to data but only allow the simulation of such data.

Conclusions

We recognize the need for easy-to-use software in order to make sophisticated and powerful multilocus

statistical techniques readily available to all geneticists. InterferenceAnalyzer is our attempt at this goal.

Availability and requirements

Project name: InterferenceAnalyzer

Project home page: http://mypage.iu.edu/∼ehouswor/InterferenceAnalyzer

Operating syatems(s): Platform independent
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Programming language: Java

Other requirements: Java 1.4.1 or higher

License: Open source

Any restrictions to use by non-academics: None
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Figures
Figure 1 - Geneticist’s Data

The figure demonstrates the three possible tetrad types between pairs of markers, parental ditype,

tetratype, and nonparental ditype, with example of how they might arise under specific crossover patterns.

Figure 2 - Analyze Raw Data Panel

The figure demonstrates the panel for the initial analysis of raw tetrad data. The data file can be uploaded

by selecting the “Load File” button. The user can choose the models for the analysis. Then the results are

printed on the panel and can be exported to a file. The genetic distances between markers can also be

stored for use in the simulations needed to test significance and give confidence intervals.

Figure 3 - Run Simulation Panel

The figure demonstrates the panel for running the simulations needed to assess significance and give

confidence intervals. The results are printed at the bottom of the panel. Scrolling to the bottom of the

results reveals the button for exporting the results to a file.

Tables
Table 1 - Sample Data

The first 6 lines of two possible formats for the sample data file including the parental marker values and

the scoring of the first tetrad. In the second data set, the first tetrad could not be properly scored at the

second marker. Any tetrad with any mis-scored marker or any gene conversion at a marker are discarded

from the analysis.
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Sample Data Sample Data
Parent 1: - - + - Parent 1: ade5,7 URA3 KAN lys5
Parent 2: + + - + Parent 2: ADE5,7 ura3 kan LYS5

First Tetrad{
+ - + -

First Tetrad{
ADE5,7 xxx kan LYS5

- - - + ade5,7 xxx KAN lys5
- + + - ade5,7 xxx KAN lys5
+ + - + ADE5,7 xxx kan LYS5

Table 2 - Sample Simulation Results

An example of the simulation results

Simulation Results
Results counting . . . counting . . . extended model extended model extended model
Simulation m negative. . . m p negative log likelihood
1 14 0.337 231.22
2 20 0.324 232.92
3 5 0.212 230.34
4 19 0.157 197.78
5 20 0.204 215.51

Additional Files
Additional file 1 — Figure 1

Figure1.pdf contains Figure 1.

Additional file 2 — Figure 2

Figure2.pdf contains Figure 2.

Additional file 3 — Figure 3

Figure3.pdf contains Figure 3.
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