Practice Exam 1

On Exam 1, there will be six problems. Your best five out of those will be graded. If you work all 6 correctly, that will be noted.

1. (a) Recall that $\binom{n}{k}=\binom{n}{n-k}$. Use a combinatorial argument to prove

$$
\sum_{k=0}^{n}\binom{n}{k}^{2}=\sum_{k=0}^{n}\binom{n}{k}\binom{n}{n-k}=\binom{2 n}{n}
$$

(b) Use a combinatorial argument to prove $\binom{n+1}{k+1}=\sum_{m=k}^{n}\binom{m}{k}$.
2. How many words (loosely defined as arrangements of letters) can be found by re-arranging all the letters in CONNECTICUT?
3. In the following diagram, circles represent switches that fail with probability p independent of each other. What is the probability that current flows from A to B ?

4. (a) Prove or find a (concrete) counterexample: if A and B are independent then A^{c} and B^{c} are independent.
(b) If A and B are disjoint, can they be independent?
5. Polygraph tests are notoriously bad at catching liars and they indicate a substantial portion of truthtellers are liars. The false positive rate for polygraph tests is about 16% and the false negative rate is about 20%. Suppose a company engaged in sensitive government work routinely screens all its applicants. Assume that the majority of its applicants (95\%) tell the truth (knowing that they are going to have to take a polygraph test) but that about 5% lie (in part, knowing that there is a reasonable chance they will get away with the lies). What is the probability a randomly screened applicant is really lying given that the polygraph indicates he is lying?
6. Let $f(x)=c x^{2}$ for $0 \leq x \leq 1$ and let f be zero otherwise. For what value of c is f a probability density function? How would you generate a random sample from this distribution given uniform random numbers in $[0,1]$?

