
Supplemental 1

Ratios

This lecture provides supplemental material concerning the handling of ratios in statistics. When
you analyze, say with a t-test, a collection of ratios, the raw data are the ratios, and you are asking
and answering questions about the individual ratios. When you are interested, however, in the
population ratio, this is a mathematically incorrect way of asking and answering the question. We
discuss a better way below.

Population Ratios

For the moment, let’s consider traffic fatalities in 1995 and in 1996 in a country with two states.
The data below have been stratified by the two states. Percentage increase, or decrease, in fatalities
is computed as the difference in fatalities over the number of fatalities in 1995. This is the ratio minus
one, so it is a quantity that is very closely related to the ratio. For starters, we are simply going to
consider ratios for now.

1995 1996 ratio
State 1 185 200 1.081
State 2 589 556 0.944
Totals 774 756 0.974

If you wanted to know the ratio for the country, however, you would not average the ratios 1.081
and 0.944 to report an average of 1.0125. Instead, you would total the fatalities for the two years
and compute the ratio of the totals which gives 0.974. Even that statistic is slightly off. It is biased
and, on average, is slightly away from where it should be. There are formulas, however, that, while
complicated, are reasonable to compute.

Let

R =
µy

µx

be a population ratio of interest. Let X̄ and Ȳ be the sample means, s2X and s2Y be the sample
variances, ρ̂ be the sample correlation, and n be the sample size. A bias-corrected estimate of R is
given by the following formula which uses all of the symbols just defined and can be calculated in
Excel:
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Its estimated variance is
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so that the standard error of the estimator R̂ is
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All of that may look complicated, but the formulas only involve quantities that are easy to calculate
from the data.

Example: Did raising the speed limit increase fatalities?

Did the law allowing stated to raise the speed limit on American highways increase fatalities in
car crashes? You did a paired analysis on these data treating the ratios in each state as independent
data of interest. But what if we wanted an estimate of the percentage increase in fatalities in the
collection of states that chose to increase the speed limit and we wanted to compare that estimate
to the estimate from the collection of states that chose to retain the speed limit. Then we need the
collection of estimates in the formula for estimating the collective ratio above. Let X denote the
1995 fatalities and Y denote the 1996 fatalities.

States that increased their speed limits States that retained their speed limits

X̄ = 941.5 Ȳ = 950.8 X̄ = 614.8 Ȳ = 612.6
s2X = 893, 057 s2Y = 934, 842 s2X = 218, 486 s2Y = 217, 704

n = 32 n = 19
ρ̂ = 0.993 ρ̂ = 0.997

R̂ = 1.010 S.E.(R̂) = 0.021 R̂ = 0.996 S.E.(R̂) = 0.012

Based on these estimates and their standard errors, it does not seem like there is any difference
between the states who chose to increase their speed limits and those that chose to retain them at 55
mph. We can do a formal, but approximate, test:
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is approximately normally distributed. It is only approximate, but we have no formal correction like
when we use a t-distribution instead of a standard normal distribution, and so we simply use the
normal approximation. Note that the variance of the sum or difference of two independent random
variables is the sum of the variances - variances add, standard deviations and standard errors do not.
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In our case,

Z ≈
1.010− 0.996√

(0.021)2 + (0.012)2
= 0.55,

which is clearly an insignificant score.

The data follow. After that there is a technical explanation about why these formulas work. The
technical explanation requires an understanding of calculus.

Increased speed limit Retained speed limit
State 1995

deaths
1996
deaths

percent
change

State 1995
deaths

1996
deaths

percent
change

AL 1114 1146 2.9 AK 87 81 -6.9
AZ 1025 994 -3 CT 317 310 -2.2
AR 631 615 -2.5 D.C. 58 62 6.9
CA 4192 3989 -4.8 HI 130 148 13.8
CO 645 617 -4.3 IN 960 984 2.5
DE 121 116 -4.1 KY 849 842 -0.8
FL 2805 2753 -1.9 LA 894 902 0.9
GA 1488 1573 5.7 ME 187 169 -9.6
ID 262 258 -1.5 MN 597 576 -3.5
IL 1586 1477 -6.9 NH 118 134 13.6
IS 527 465 -11.8 NJ 774 814 5.2
KS 442 490 10.9 NY 1679 1593 -5.1
MD 671 608 -9.4 NC 1448 1494 3.2
MA 444 417 -6.1 OR 574 526 -8.4
MI 1530 1505 -1.6 SC 881 930 5.6
MS 868 811 -6.6 VT 106 88 -17
MO 1109 1148 3.5 VA 900 877 -2.6
MT 215 200 -7 WV 377 348 -7.7
NE 254 293 15.4 WI 745 761 2.1
NV 313 348 11.2
NM 485 485 0
ND 74 85 14.9
OH 1360 1391 2.3
OK 669 772 15.4
PA 1480 1469 -0.7
RI 69 69 0
SD 158 175 10.8
TN 1259 1239 -1.6
TX 3183 3742 17.6
UT 325 321 -1.2
WA 653 712 9
WY 170 143 -15.9
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The Delta Method: Taylor Series Expansions and Approximation Methods

The reason why the formulas work is that we have expanded a function of one or more random
variables in a Taylor series about the mean(s). Recall that the Taylor series expansion of a function
of one variable about a specific point x0 is:

f(x) = f(x0) + (x− x0)f
′(x0) +

(x− x0)
2

2!
f ′′(x0) + · · ·

For our purposes, we will only consider out to the linear or the quadratic terms. There is a more
complicated, but similar, formula for a function of two variables. This section just describes functions
of a single variable, so we will not derive the formula for ratios here.

If X is our random variable and µ = EX is its mean, then the first degree (linear) Taylor series
approximation is

f(X) ≈ f(µ) + (X − µ)f ′(µ)

The mean is a good place to expand about because it is usually a good guess as to what a random
data point will be and one generally expects a lot of data to be around the mean value. We use
Ef(X) to denote the mean of this function of the random variable X. An initial approximation to
this mean is

Ef(X) ≈ f(µ) + E(X − µ)f ′(µ) = f(µ) + 0 = f(µ)

since the expected value of a constant is just the constant and the expected value of X is µ. Our
approximation to the variance of f(X) is

var(f(X)) ≈ var (f(µ) + (X − µ)f ′(µ)) = var(X)(f ′(µ))2

A better approximation to the mean uses the second order (quadratic) Taylor series expansion of
f(X) and corrects for bias:

Ef(X) ≈ f(µ) + E(X − µ)f ′(µ) +
E(X − µ)2

2
f ′′(µ) = f(µ) + 0 + f ′′(µ)var(X)/2

Note that all of those formulas involve things that we do not know, such as the mean and the
variance of the population. However, we use the ”plug” in principle in statistics that says we should
plug in our best guesses, namely the mean and variance of the data. That gives the following formulas:

Ef(X) ≈ f(X̄) + f ′′(X̄)s2X/2

and

(var)(f(X)) ≈ s2X(f ′(X̄))2
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Example 1 An exponential random variable, X, with mean 1 has variance 1. Use this information
to approximate the mean and variance of ln(X).

Let f(x) = ln(x). Then f ′(x) = 1/x and f ′′(x) = −1/x2. So that E ln(X) ≈ ln(1) −
(1/2) = −1/2 and (var)(ln(X)) ≈ 1. These are not great approximations because the exponential
distribution and the log of it are both very spread out. Simulations suggest that the mean is about
−0.57 and the variance is about 1.7. However, if instead of a single member of the population, we
were dealing with population averages, the approximation would improve. See the next example.

Example 2 Suppose we have a sample of size 100 from any distribution and the sample mean is 1
and the sample variance is 1. Approximate the mean and variance of ln(X̄). The difference here is
that the sample average, X̄ is approximately normal and is close to its mean.

Note that ln(1) = 0 but the var(X̄) = 1/100 since the variance of the mean decreases propor-
tional to the sample size. Thus, E ln(X) ≈ ln(1) − (1/200) = −0.005 and (var)(ln(X)) ≈
1/100 = 0.01. Simulations suggest that these approximations are quite accurate.

For a derivation of the formula for ratios, see Rice: Mathematical Statistics and Data Analysis.
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