
Lecture 29

Model Selection II

In this lecture, we will discuss methods for building models; that is, for selecting the best predictor
variables to include in a linear regression model. The data we will use are data about predicting base-
ball salaries from player statistics and are available at: http://www.amstat.org/publications/jse/jse
data archive.html

Methods for Model Building

If two models are nested, they can be compared directly using a nested models F-test as discussed
earlier. This is the method used for forward and backward selection procedures where variables are
added (removed) from the model one at a time until the model does not become better (worse).
Minitab can do something better than this - it compares all possible models using a best subset
approach and spits out statistics about the models that allows you to choose your own best model.
There is, however, no set way to compare non-nested models. There are many, many ways. A few
of the common ways are described in the following table. In this table k is the number of predictors
included in the model and n is the number of individuals (the sample size). The full model includes
all possible predictors.

Criterion Formula Comments

Cp (k + 1) + (n− (k + 1))
σ̂2 − σ̂2

Full
σ̂2

Full

Mallow’s criterion. Want the value to be
closed to k + 1.

AIC n log(σ̂2) + 2(k + 1) Aikake Information Criterion. Larger
penalty for more predictors. Want the
value as small as possible.

BIC n log(σ̂2) + (k + 1) logn Bayesian Information Criterion. Even
larger penalty for more predictors, espe-
cially if the sample size is large too. Tries
to correct for over-fitting. Want the value
as small as possible.

GCV
n2σ̂2

(n− (k + 1))2
=

nSSE

(n− (k + 1))2
Generalized Cross Validation. Approx-
imates the leaving-one-out routine for
cross-validation. You want this value as
small as possible too.

Many of the model selection procedures above can be described as maximizing a penalized log
likelihood function. The problem is that the penalty can be arbitrary leading to an infinite number
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of model selection procedures. Moreover, not only is there no one way of selecting variables but there
may be several nearly equally good models. You also want to use common sense and convenience
when constructing a model. For example, variables that are expensive to collect should only go in
the model if absolutely necessary, for instance. Also, if all else is equal, models with fewer variables
are preferred to models with more variables.

We will go over how to use best subsets in Minitab with the baseball data. With that data, we
should first figure out what the right transformations of the variables should be before we do variable
selection procedures as described above. In the example, salaries should be log transformed.

The best subsets table from Minitab for the baseball data then looks like the following:

Best Subsets Regression: log_salary versus Batting_aver, On_base_perc, ...

Response is log_salary
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Vars R-Sq R-Sq(adj) Cp S e e s s s s s I s s s s y t e n

1 44.6 44.4 562.2 0.87734 X

1 42.5 42.4 594.8 0.89317 X

2 64.8 64.5 238.0 0.70051 X X

2 62.6 62.4 272.5 0.72145 X X

3 77.2 77.0 38.7 0.56395 X X X

3 77.0 76.8 41.8 0.56639 X X X

4 78.3 78.1 22.6 0.55075 X X X X

4 78.3 78.0 24.2 0.55198 X X X X

5 79.0 78.7 14.2 0.54333 X X X X X

5 78.9 78.6 16.1 0.54487 X X X X X
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6 79.4 79.0 9.3 0.53854 X X X X X X

6 79.4 79.0 9.4 0.53863 X X X X X X

7 79.6 79.2 7.8 0.53655 X X X X X X X

7 79.6 79.2 8.3 0.53696 X X X X X X X

8 79.8 79.3 7.0 0.53506 X X X X X X X X

8 79.8 79.3 7.7 0.53566 X X X X X X X X

9 79.9 79.4 6.9 0.53413 X X X X X X X X X

9 79.9 79.4 7.0 0.53421 X X X X X X X X X

10 80.0 79.4 7.1 0.53351 X X X X X X X X X X

10 80.0 79.4 7.9 0.53418 X X X X X X X X X X

11 80.1 79.5 7.9 0.53330 X X X X X X X X X X X

11 80.1 79.4 8.5 0.53380 X X X X X X X X X X X

12 80.1 79.4 9.5 0.53382 X X X X X X X X X X X X

12 80.1 79.4 9.7 0.53396 X X X X X X X X X X X X

13 80.2 79.4 11.3 0.53448 X X X X X X X X X X X X X

13 80.2 79.4 11.4 0.53451 X X X X X X X X X X X X X

14 80.2 79.3 13.2 0.53518 X X X X X X X X X X X X X X

14 80.2 79.3 13.2 0.53521 X X X X X X X X X X X X X X

15 80.2 79.3 15.1 0.53592 X X X X X X X X X X X X X X X

15 80.2 79.2 15.1 0.53598 X X X X X X X X X X X X X X X

16 80.2 79.2 17.0 0.53671 X X X X X X X X X X X X X X X X

Mallow’s Cp criterion picks out one model as best; the one with 7 predictors: hits, runs, walks,
strike-outs, free-agency, free agency possible, and arbitration possible.

We can also find the AIC and BIC criteria. However, these select different models as we will see
in class.

Finally, BIC has the nice interpretation of giving posterior model distributions. That is, if all
models are equally likely to begin with, then the posterior probability on a model is proportional
to exp(−BIC). Using this (and some necessary scaling) we can construct a posterior probability
distribution on our sets of models. We will discuss the advantages of this approach in class.

Exercises for Lecture 29

1. – 2. –


