
Lecture 22

Multiple Linear Regression I

An Introduction to Matrices

A matrix is an array such as the following[
a b
c d

]
or

a b
c d
e f

 or

[
a b c
d e f

]

The entries are indexed by their row and column number. In the matrix,

A =

12 5
8 2

1.2 1.1


A1,1 = 12, A2,2 = 2, and A3,2 = 1.1.

Matrices are added entry-wise:

12 5
8 2

1.2 1.1

+

1 0
1 0
1 1

 =

13 5
9 2

2.2 2.1


Thus, to be added together, two matrices must have the same dimensions.

Matrix multiplication is useful but a little more complicated. To be multiplied as A × B the
number of columns of A must equal the number of rows of B. If A has dimensions n× k and B has
dimensions k ×m, then their product has dimensions n×m. The entries in the matrix product are
the sum of the products of the row entries in A and column entries in B as in the following examples:

1 5
8 2
1 1

× [1 2 3
4 5 6

]
=

1× 1 + 5× 4 1× 2 + 5× 5 1× 3 + 5× 6
8× 1 + 2× 4 8× 2 + 2× 5 8× 3 + 2× 6
1× 1 + 1× 4 1× 2 + 1× 5 1× 3 + 1× 6

 =

21 27 33
16 26 36
5 7 9


In the previous example a 3× 2 and a 2× 3 matrix were multiplied to give a 3× 3 product.

This is useful when thinking about regression because regression can be put into a matrix format
as follows.
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Matrix Formulation of Simple Linear Regression

For simple regression, we have paired data (X1, Y1), (X2, Y2), . . . , (Xn, Yn). A matrix formulation
of regression is the following:


Y1

Y2
...
Yn

 =


1 X1

1 X2
...

...
1 Xn

×
[
a
b

]
+


ε1
ε2
...
εn


How do we solve for a and b? Just like with regular multiplication, we need to be able to invert

(divide). The inverse of a number is what you multiply the number by to get 1. In the case of
matrices, the “1” is the identity matrix

I =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
...

0 0 0 · · · 1


It is a matrix with 1’s down the diagonal and zeros elsewhere. If A has an inverse, it is denotes

A(−1) and it is the matrix so that

A×A(−1) = A(−1) ×A = I.

Among other things, this forces A to be square (to have the same number of rows as it has columns).

So, to solve for a and b above, we need to invert, but there is no square matrix around. To get
a square matrix, we consider the transpose of a matrix which is the matrix you get by flipping rows
and columns:

1 X1

1 X2
...

...
1 Xn


T

=

[
1 1 · · · 1
X1 X2 · · · Xn

]

Multiplying the regression equation through by this matrix we get

[
1 1 · · · 1
X1 X2 · · · Xn

]
×


Y1

Y2
...
Yn

 =

[
1 1 · · · 1
X1 X2 · · · Xn

]
×


1 X1

1 X2
...

...
1 Xn

×
[
a
b

]
+

[
1 1 · · · 1
X1 X2 · · · Xn

]
×


ε1
ε2
...
εn
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or, carrying out the matrix multiplication[ ∑
Yi∑
XiYi

]
=

[
n

∑
Xi∑

Xi

∑
X2
i

]
×
[
a
b

]
+

[ ∑
εi∑
εiXi

]

Now, we have a square matrix and we can invert it. There is an easy formula for the inverse of a
2× 2 matrix. You can try it out and see that it works:

[
a b
c d

](−1)

=

[
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

]

Thus, in the regression equation, we see that ∑
X2
i

n
∑
X2
i −(

∑
Xi)2

−
∑
Xi

n
∑
X2
i −(

∑
Xi)2

−
∑
Xi

n
∑
X2
i −(

∑
Xi)2

n
n

∑
X2
i −(

∑
Xi)2

×[ ∑Yi∑
XiYi

]
=

[
a

b

]
+

 ∑
X2
i

n
∑
X2
i −(

∑
Xi)2

−
∑
Xi

n
∑
X2
i −(

∑
Xi)2

−
∑
Xi

n
∑
X2
i −(

∑
Xi)2

n
n

∑
X2
i −(

∑
Xi)2

×[ ∑ εi∑
εiXi

]

Since the residuals sum to zero and are independent of the X’s, the best guess for the coefficients
is [

â

b̂

]
=

 ∑
X2
i

n
∑
X2
i −(

∑
Xi)2

−
∑
Xi

n
∑
X2
i −(

∑
Xi)2

−
∑
Xi

n
∑
X2
i −(

∑
Xi)2

n
n

∑
X2
i −(

∑
Xi)2

× [ ∑Yi∑
XiYi

]
=

∑
X2
i

∑
Yi−

∑
Xi

∑
XiYi

n
∑
X2
i −(

∑
Xi)2

n
∑
XiYi−

∑
Xi

∑
Yi

n
∑
X2
i −(

∑
Xi)2


These are the same formulas as before.

The point here is that for more than just one predictor variables, regression is best thought of in
terms of matrices. Further, the fact that the coefficients are found by inverting matrices will explain
some of the difficulties one sometimes encounters with regressions in practice; difficulties that we will
discuss in a later section.

Matrix Formulation of Multiple Linear Regression

For more than one predictor, we need to use other notation for intercepts and slopes. If we have
k predictors, then we write Y = β0 +β1X1 +β2X2 + · · · βkXk and the matrix formulation of our data,
which is now of the form (X11, X21, . . . , Xk1, Y1), (X12, X22, . . . , Xk2, Y2), . . . , (X1n, X2n, . . . , Xkn, Yn),
is


Y1

Y2
...
Yn

 =


1 X11 X21 · · · Xk1

1 X12 X22 · · · Xk2
...

...
...

...
...

1 X1n X2n · · · Xkn

×

β0

β1
...
βk

+


ε1
ε2
...
εn
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Using bold letters for the corresponding matrices, we write the above equation simply as

Y = Xβ + ε

Then our best guess for the coefficients is

β = (XTX)(−1)XTY

which is how the computer finds the estimates of the coefficients for you. The estimate of the
variance-covariance matrix for the coefficients is

var(β) = (XTX)(−1)σ2

Interpretation of Regression Coefficients in Multiple Linear Regression

The slope coefficient for a particular predictor measure how much the response changes to a one-
unit increase in that predictor IF ALL ELSE REMAINS THE SAME. That is, after controlling for
all other predictor variables and fixing their values, the slope of a particular predictor tells how much
influence that predictor has on the response.

That is, for Y = β0 + β1X1 + β2X2 + · · · βkXk, the slope β1 is how much the response Y increases
with one unit of change in X1 if all other predictor variables stay the same.

This is how we know smoking causes lung cancer; study after study controlling for all kinds
of predictors such as age, occupation, socioeconomic status, etc.., still give a significant impact of
smoking on lung cancer.

Exercises for Lecture 22

1. – 2. –


