Lecture 16

SIMPLE LINEAR REGRESSION - II

In this lecture, we continue our discussion about the theory behind simple linear regression,
concentrating on the ANOVA table, the fit, and prediction and confidence bands for the regression.
This theory will also extend naturally to multivariate regression but it is easier to explain and to
picture with one predictor variable.

The ANOVA table for regression

The model for simple linear regression is Y = 3y + (51 X and it has 2 parameters. The total sum of
squares refers to the total sum of squares of the Y values from their common mean, without regard
to the model. The sum of squares due to the model is the part that is explained by the difference of
fitted value to the overall mean. The sum of squares due to error is the part that is the difference of
the fitted value to the observed Y value. Mathematically, that says:

. N2
SShodel = Z ((ﬁo + 51 X)) — Y) with 1 degree of freedom
.. 2
SSerror = Z <Y} — (B0 + ﬁlXi)) with n — 2 degrees of freedom
SStotal = Z (Yi — Y)2 with n — 1 degrees of freedom

Again, these add so that SS; 1.1 = SS;,oqe] + SSerror-
R? is the percent of variance in Y explained by the regression line:

SS
R? = 22model 1599 — (1 Sse”or) % 100%

SStotal Sstotal

This is also the square of the correlation coefficient (R = p? where p is the correlation between X
and Y').

Confidence and Prediction Bands

The point on the regression line we are most certain about is (X,Y’). The line always goes through
this point. A change in the slope moves the line up and down a bit but a change in the slope causes
the line to pivot around this secured point, (X,Y). Pivoting causes more uncertainty in the points
that are far away from this secured point, so the confidence and prediction bands flare out at the
ends of the regression line segment.

61



62 Lecture 16: Simple Linear Regression - 11

What is the difference between confidence and prediction? The confidence interval /band refers
to our uncertainty in the mean value of Y given a value of X (FE(Y|X)). A prediction interval /band
refers to our uncertainty in individual values of Y given a value of X. The prediction band is what
we want when evaluating the regression line for its ability to predict Down syndrome fetuses - fetuses
are individuals not averages and most normal fetuses are outside the confidence band for the average
value. By definition, 95% of normal fetus measurements will fall within the 95% prediction band.
For predicting Down syndrome, it would be useful if the Down syndrome fetuses fell outside the
prediction band.

The standard errors for the confidence and prediction intervals for a given value of X are:

SE(HY|Xy) = ¢M

n  (n—1)s%

N — X)2
SE.(Y]|Xy) = &\/1+%+M

(n—1)s

Here, the hats refer to estimates in the mean and estimates in the value of Y predicted from data.
Confidence and Prediction Band Plots in Minitab

For the problem of using the prediction of femur length from biparietal diameter, we would like to
graph the regression line for the normal fetuses, prediction bands around this regression line, and
overlay the points for the Down syndrome fetuses. This is a bit tricky in Minitab. We can adjust a
plot with careful double-clicks on the graph or you can use the typed code below. For both, you need
to store the prediction estimates for the prediction bands in Minitab when you perform the regression
for the normal fetuses.

For the former method, under Graphs choose Scaterplots... and the Connect with Groups option.
There are 3 equations to plot: the lower limits versus the BPD for the normal fetuses used to generate
those lower limits; the upper limits versus the BPD for the normal fetuses used to generate those
upper limits; and the femur lengths for the Down Syndrome fetuses versus the BPD for the Down
Syndrome fetuses. Once you have the plot, you can click (twice) on the appropriate areas to remove
the symbols for the prediction band and the connector for the Down Syndrome data. You can change
the colors, titles, and line thicknesses as well as the symbol types. In short, you and beautify the plot
by hand afterwards. We will demonstrate this in class.

A nice graph is obtained using the code below which does not print symbols for the prediction
bands but connects them instead while printing symbols for the Down syndrome data without con-
necting them. The “Type 0 0 6” gives symbol type 0 (none) to the first 2 graphs while “Type 1 1 07
after connect gives connections for the first two graphs and none for the second. Still, the resulting
graph needs some beautifying - a decent title and removing the useless legend would be a nice start.
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Plot ’PLIM1’*’BPD(normal)’ ’PLIM2’*’BPD(normal)’ ’FEMUR(Down)’* &
’BPD(Down) ’ ;
Symbol;

Type 0 0 6;
Color 1;
Size 1.0;
Connect;
Type 1 1 0;
Color 1;
Size 1;
Overlay.

The Regression Effect

In any test/retest situation, including father/son height, you have the following phenomenon: if
you score much higher than the mean, it is likely a fluke, and you will likely score lower the next
time. Similarly, if you score much lower than the mean, it is also likely a fluke, and you will likely
score higher the next time. With fathers and sons, sons of exceptionally tall fathers tend to be tall
but not quite as tall as their father. This was called “regression toward mediocrity” by Galton.

Mathematically, what we have is the following, which comes from re-writing the regression equa-
tion:

Since, typically, p is less than 1 we see that the normalized value for Y is predicted to be lower than
the normalized value for X. That is, Y deviates less from its predicted value than X does when
properly normalized. The following picture is for the normalized son’s height predicted from the
normalized father’s height using Pearson’s data. The thick dashed line is the line Y = X whereas
the solid thin line is the regression line. Note that for both fathers who are unusually tall and for
fathers who are unusually short, their sons tend to be less unusual. Also, knowing your father’s height
decreases your variation.
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Regression to Mediocrity/Regression Falacy

Son
=

Father

The regression fallacy is believing that this means that there is less overall variation in the son’s
heights than in the father’s heights and that successive generations will necessarily become more
homogeneous. That is not necessarily the case. Overall, in the example, sons are just as variable as
their fathers. The raw data even suggests slightly more so. See

http://stat-www.berkeley.edu/users/juliab/141C/pearson.dat

Exercises for Lecture 16




