
Lecture 15

Simple Linear Regression - I

In this lecture, we discuss the theory behind simple linear regression. This theory will extend
naturally to multivariate regression but it is easier to explain and to picture with one predictor
variable.

Simple Linear Regression – Theory

Suppose we have two variables, X and Y , measured on the same individuals, and we want to use X
to predict the value for Y . Examples might include predicting whether a fetus has Down Syndrome
or not from ultrasound measurements and the femur length of the fetus from its head diameter
measurement. In the former situation, Y is binary and this is a problem for logistic regression. The
latter situation is more typical of the one we will be considering here - both X and Y are continuous.
The simplest model is linear

Y = a+ bX = β0 + β1X

That is the ideal situation. For statistics, we say EY = a+ bX = β0 + β1X and

Yi = a+ bXi + εi = β0 + β1Xi + εi

where εi ∼ N(0, σ2). Note that σ2 is constant (along the line - for any value of X) - that is the
homogeneity of variance assumption.

Given data, what are the best guesses for β0, β1 (a, b)? The definition of “best” here is the values
that minimize the vertical distances from the observed data, Yi, to their predicted values on the
regression line, a+ bXi. That is, we minimize

∑
ε2i . (Note:

∑
εi = 0. Why?)
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The mathematics of finding a and b is as follows: Note that
∑
ε2i =

∑
(Yi − a− bXi)

2 and let

f(a, b) =
n∑
i=1

(Yi − a− bXi)
2

To minimize f , we take the derivative with respect to a and b, set them equal to zero, and solve for
a and b:

∂f

∂a
(a, b) =

n∑
i=1

−2(Yi − a− bXi) = 0

∂f

∂b
(a, b) =

n∑
i=1

−2Xi(Yi − a− bXi) = 0

Remember, Xi and Yi are known data values and we are trying to solve for a and b. A little
algebra yields the solution to the two equations above are:

â =
(
∑
X2
i )(
∑
Yi)− (

∑
Xi)(

∑
XiYi)

n
∑
X2
i − (

∑
Xi)2

b̂ =
n(
∑
XiYi)− (

∑
Xi)(

∑
Yi)

n
∑
X2
i − (

∑
Xi)2

=

∑
(Xi − X̄)(Yi − Ȳ )∑

(Xi − X̄)2

The hats are because the values are estimated from the data and are estimates of the real values
(statistics notation). Again, these formulas are programmed for you in Minitab or any other statistical
software package you might use.

There is another point of view for finding a and b which is the method of maximum likelihood. We
mention the point of view here because it is going to come up again - especially for logistic regression.
Since the residuals are normally distributed, the probability density on them is

f(εi) =
1√
2πσ

e−(Yi−a−bXi)2/(2σ2)

and the likelihood function for a and b given the data is the product of these over all the data (i):∏
f(εi) =

(
1√
2πσ

)n
e−

∑n
i=1(Yi−a−bXi)2/(2σ2)

If we find the values of a and b that maximize this likelihood function, it is the same as minimizing
the sum in the exponential and so we get the same answer as above. But maximizing the likelihood
function generalizes to more situations that minimizing the sum of squares of the residuals does since
some models do not have meaningful residuals.



Lecture 15: Simple Linear Regression - I 59

After you find the best guess for a and b (β0 and β1), you want to address question such as: could
the slope (b or β1) be zero? If the slope is zero, then there is no significant linear relationship between
X and Y . To answer questions like this, we need to know the distribution for β̂0 and β̂1. Both of
these estimators are unbiased. That is, Eβ̂0 = β0 and Eβ̂1 = β1. Further, the distributions are both t
distributions with n−2 degrees of freedom when the estimator is properly normalized by its standard
error. The n − 2 degrees of freedom comes from the fact that we are using the data to predict two
parameters a and b. The standard errors are:

S.E.(β̂0) = σ̂

√
1

n
+

X̄2

(n− 1)s2
x

S.E.(β̂1) = σ̂

√
1

(n− 1)s2
x

Why do the above formulas work? Consider

β̂1 = b̂ =
(
∑
Xi − X̄)(Yi − Ȳ )∑

(Xi − X̄)2

View X as fixed and Y are random. Then

Var(b̂) =

∑
(Xi − X̄)2Var

(
Yi − Ȳ

)(∑
(Xi − X̄)2

)2 =
σ2∑

(Xi − X̄)2
=

σ2

(n− 1)σ2
x

The example we will use is some data I was asked to analyze for a medical doctor in Oregon.
He was trying to reproduce results showing that ultrasound measurements of fetuses are useful in
predicting whether the fetus has Down syndrome or not. We will simply look at the problem of
predicting femur length from biparietal diameter. The data are available from the WEB page for this
class. The following figure shows the simple regression of biparietal diameter (BPD) on the femur
length for normal fetuses with the data for Down Syndrome fetuses overlaid.
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The Minitab output of running a regression analysis on just the normal fetuses is:

Regression Analysis: FEMUR(normal) versus BPD(normal)

The regression equation is

FEMUR(normal) = - 9.72 + 0.878 BPD(normal)

Predictor Coef SE Coef T P

Constant -9.7238 0.3177 -30.60 0.000

BPD(normal) 0.878090 0.008822 99.53 0.000

S = 2.02436 R-Sq = 91.7% R-Sq(adj) = 91.7%

Analysis of Variance

Source DF SS MS F P

Regression 1 40595 40595 9906.07 0.000

Residual Error 898 3680 4

Total 899 44275

We will discuss the meaning of this output in class in this and in the next lecture.
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