
Lecture 5

Log Transformations

In this lecture, we will discuss the most common transformation made to data to eliminate skew-
ness and improve normality - the logarithm transformation. The theoretical justification of this
transformation is that your errors are occurring on a multiplicative rather than additive scale. This
occurs all the time - salaries, for instance, are often percentage pay raises of your existing salary mak-
ing their error from their trend, over time, multiplicative rather than linear. Many other phenomena
naturally occur on the multiplicative rather then the linear scale. Such data are bounded below by
zero and are right skewed. We will discuss the interpretation of the results after a log transformation
has been made which, on the original scale, involves the fold increase (or decrease) in median value.

Mathematical facts for logarithms

All logarithms are multiples of each other, so, for mathematicians, there is but one logarithm, the
natural logarithm: loge(x) = ln(x) = log(x). When we use log we will mean the natural logarithm.
When we want to use any other base, we will specify it. Sometimes, we will use ln for the natural
logarithm, especially if there are logarithms involving other bases around.

When y = log x then x = ey. This relationship gives us various rules for handling logarithms. For
instance log(ab) = log a+ log b because when you multiply numbers with the same base you add their
exponents. That is, let x = log a and y = log b. Then a = ex and b = ey and ab = exey = ex+y so
that log(ab) = x+ y = log a+ log b.

Similarly, log(a/b) = log a− log b.

As for changing bases, if x = log2 y then y = 2x. But 2 = eln 2 so y =
(
eln 2
)x

= ex ln 2. Thus,

ln y = x ln 2 and x = log2 y = ln y
ln 2

. In general, logb y = ln y
ln b

.

Multiplicative versus additive errors

Data which is normally distributed has an additive error structure. That is, if X1, X2, . . . , Xn is
normal with mean µ and standard deviation σ, then Xi = µ+ εi where εi is the error and is normally
distributed with mean 0 and standard deviation σ.

Data which is log-normally distributed (for which the logarithm is normally distributed) has a
multiplicative error structure. That is, if logX1, logX2, . . . , logXn are normally distributed with
mean µ and standard deviation σ then logXi = µ + εi so that Xi = eµ+εi = eµ × eεi . Multiplicative
error structures occur naturally - pay raises are often percentage increases over your current salary,
population growth is a percentage increase over the current size, etc... Data which is log normally
distributed is bounded below by zero and skewed to the right.

18



Lecture 5: Log Transformations 19

Statistical interpretation

Consider your data: initially you have two sets of data: x1, x2, . . . , xnx and y1, y2, . . . , yny . If a log
transformation is appropriate, then after the transformation, you are comparing two new sets of data:
log x1, log x2, . . . , log xnx and log y1, log y2, . . . , log yny . The question a t-test would answer on the
transformed data is whether mean(logX) = mean(log Y ). How does this relate to the original data?
By the rules of logarithms, mean(logX) = (log x1 + log x2 + · · · log xnx)/nx = log( nx

√
x1x2 · · ·xnx)

which is the logarithm of the geometric mean, not of the arithmetic mean. We will return to this
observation at the end of this lecture.

However, if the log transformation is successful and the logged data is symmetrical, then mean(logX) ≈
median(logX) ≈ log(median(X)). So that the t-test for the equality of the means from two log trans-
formed data sets can be interpreted as a test for the equality of the median values on the original
scale.

Thus, when comparing the means of two log-transformed data sets, we have

a = mean(logX)−mean(log Y )

≈ median(logX)−median(log Y )

= log(medianX)− log(medianY )

= log
medianX

medianY

so that

medianX

medianY
= ea = C

or, equivalently,

medianX = C ×medianY.

If C > 1, we say that the median of X is C-fold (or times) higher than the median of Y . If C < 1,
we could say that X is C-fold (or times) lower than the median of Y or we could invert C and say
that the median of Y is 1/C-fold (or times) higher than the median of X.

The following example will involve the 100× (1−α)% confidence interval for the difference in two
means based on the t-distribution. The general formula is:

(X̄ − Ȳ )± tα
2
,d.f.S.E.(X̄ − Ȳ )

where tα
2
,d.f. is the cut off from the t-distribution with the given degrees of freedom that puts prob-

ability α/2 in the right tail, and the degrees of freedom and the standard error come from one of the
versions of the t-test given in Lecture 3.

Example 1 The following data are originally from Kapitulnik et al. 1976 and used in Biostatistics
by van Belle et al. The data are the rate of metabolism (nmol 3H2O formed/g per hour) of the drug
zoxazolamine in the placentas of women who smoked and who didn’t smoke during pregnancy.
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Non-smoker Smoker
0.18 0.66
0.36 0.60
0.24 0.96
0.50 1.37
0.42 1.51
0.36 3.56
0.50 3.36
0.60 4.86
0.56 7.50
0.36 9.00
0.68 10.08

14.76
16.50

The data from the smoking group just beg for a log transformation and the data from the non-smokers
are not hurt by such a transformation. NOTE: it only makes sense to log transform both data sets
if you log transform one of them. For the log transformed data, any statistical software package can
spit out Welch’s version of the confidence interval and you see that the confidence interval for the
difference in the means of the logged data from smokers and the logged data from non-smokers is
(1.39, 2.86). Exponentiating, we see that the confidence interval for

median rate for smokers

median rate for non-smokers
is (e1.39, e2.86) = (4.0, 17.4)

In words, the median rate of metabolism for smokers is 4 to 17.4 times higher than the median rate
for non-smokers (based on a 95% confidence interval of the logged data using Welch’s t-statistic with
15 degrees of freedom.)

Another way of interpreting the result using words is to say that the rate of metabolism for
smokers is 300-1640% higher than that for non-smokers. (For “percent higher,” you subtract 1 from
the fold-increase and then multiply by 100. This works when there is an increase.)

Yet another way of viewing the data is to look at the confidence interval for the ratio of the median
rate for non-smokers to the median rate for smokers. This is the reciprocal of the confidence interval
above: (0.057, 0.25). In words, the median rate of metabolism for a non-smoker is between 0.057 and
0.25 times the rate for a smoker. That sound awkward. Another way is to day that the median rate
of metabolism for a non-smoker is 75-94.3% lower than that of a smoker. (For “percent lower,” you
subtract the fold-decrease from 1 and then multiply by 100.)

The interpretations above for the data on the original scale involve the medians because, as noted
before, if the log transformed worked, then the logged data is symmetrical and the mean of the
logged data is approximately the median of the logged data and, in mathematical terms, “median”
and “logarithm” commute (that is, the log of the median is the median of the logs.) Another possible
interpretation is to work with the mathematical fact that the mean of the logged data is the geometric
rather than arithmetic mean of the original data. There is dispute, however, whether geometric means
have useful interpretations. IU SPEA faculty member, David Parkhurst, has written at least one paper
on this subject. See the reference provided below.
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Exercises for Lecture 5

1. – 2. –


