Lecture 3

VARIOUS VERSIONS OF THE T-TEST

In this lecture, we will discuss various versions of the t-test for determining whether two means are
equal or not. The theory behind the test was first developed by William Sealy Gosset who, working
for Guiness brewery in Ireland, wrote under the pen name “Student” in order to safeguard Guiness’s
trade secrets. The pooled-variance t-test below is also called Student’s t-test. The Student’s t-test
has a mathematical elegance about it that was essential at the time it was developed - in 1908, before
modern calculators and computers. A more practical t-test, called Welch’s or the Welch-Satterthwaite
t-test, was developed in 1937 (by Welch) and 1946 (by Satterthwaite). This test is easily figured with
a modern calculated and is standard in statistical software packages. The concept of a t-test should
be familiar to you from your previous statistics course(s).

The situation we are going to consider in this lecture is comparing the means of two separate
and independent groups - for instance, a treatment and a control group for a clinical trial where
individuals were randomly assigned to one group or the other. The two populations need not be
treatment and control - there could be two different treatments or two different categories. However,
for the purpose of the discussion below, we will use the treatment and control terminology. The
question is whether the treatment has a (positive) effect which could be measured with a two sided
alternative (the means after the experiment are not equal) or either of the one-sided alternative (the
treatment group’s mean is greater than the control group’s mean or the treatment group’s mean is
less than the control group’s mean).

It is always a good idea to have in mind what the data looks like. In this case, the data will be
two groups of numbers. The results for the treatment group will be one set of numbers: X, X, ...,
X, where n, is the sample size for this group. The results for the control group will be another set
of number: Y1, Y, ..., Y, where n, is the sample size for the control group.

Let X be the average of the treatment data and Y be the average of the control data. Let s, be
the standard deviation of the treatment data and s, be the standard deviation of the control data.
The the test for whether the population means are equal or not (or that the treatment mean is smaller
or that the treatment mean is larger) is based on the test statistic:

D S
 SE(X-Y)

There are two aspects of this formula that are omitted from the line above. One is obvious - the
formula for calculating the denominator or standard error of the difference in the means. The differ-
ence of the two sample means is our estimate of the difference in the true, unobservable, population
mean values, and the standard error is the standard deviation of this estimate. Means vary less than
individuals, so the standard error for a mean is less than the standard deviation of the population.

The second is not necessarily obvious - the distribution of the t-test statistic depends on a number
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called the degrees of freedom. Essentially, if you use a set of data to estimate one population quantity,
say the mean, you lose one degree of freedom. That is, given n — 1 data points and the sample
mean, you can recover the n'* data point. In the case of the t-test, you use the data to estimate
the population standard deviations that enter into the standard error formula, so you lose degrees
of freedom there. You can also think of the degrees of freedom as follows: it is a way of taking into
account your using the data twice: once to estimate standard deviations and then to test means.

Different versions of the t-test calculate the standard error and degrees of freedom differently. The
pooled t-test assumes that the population standard deviation of the two groups are equal. It then
calculates a pooled standard deviation using the data from the two groups as follows:

L \/(m —1)s2 + (n, — 1)s2

Ng + Ny — 2

The standard error and degrees of freedom for the t-test statistic are then given by

SE(X -Y)=s,y/—+— df. =n, +n, —2

This method has a nice mathematical elegance to it. Unfortunately, elegant mathematics often
does not lead to practical statistics. A better version of the t-test, one that considers the possibility of
different standard deviations in the different populations, is Welch’s t-test. For this test, the standard
error is calculated straightforwardly but the degrees of freedom formula is more complicated:
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When the two sample standard deviations are close, the degrees of freedom for Welch’s test are close
to the degrees of freedom for the pooled test (n, + n, — 2). This is the maximum number of degrees
of freedom possible. When one of the two sample standard deviations is much larger than the other,
the degrees of freedom for Welch’s test are closer to n — 1 where n is the sample size for the group
with the larger standard deviation.

A cheap alternative is often presented in elementary statistics texts: calculate the standard error
as above for Welch’s test but use the most conservative degrees of freedom possible (min(n,, n,) —1).
This test is pointless for any real researcher - it is only useful for the convenience of administering
exams. Any decent statistical software package will have Welch’s t-test pre-programmed for you to
use and it is the t-test I recommend using in most circumstances. It is rare to be in a situation in
which you are sure the two populations should have the same standard deviations. If you are in that
situation but do not know it, Welch’s t-test will likely give the degrees of freedom estimate close
to that of the pooled t-test and the standard error it gives will likely be close to that given in the
pooled t-test. If not, Welch’s t-test provides an accurate way of taking into account the differences
in standard deviations.



Lecture 3: Various versions of the t-test 11

Significance level or Type I error

Tests have errors. There are two types of errors associated with hypothesis testing. The first
is often set by the researcher. Before collecting data, most people have in mind a figure for the
significance level (also called the type I error) of the test they are conducting. As discussed earlier,
the most common value for the significance level of a test is 5% because Sir Ronald Fisher decided
that a 1 out of 20 mistake was acceptable. The significance level is the probability you would reject
the null hypothesis (here, of equal means) under the scenario the means actually are equal. The
significance level corresponds to a cut-off value of the test. If your test statistic is larger, it means
you think you are not so likely to have gotten it by chance so that you doubt the null hypothesis of
equal means is true.

p-value

Most often, you will not report just whether your result is significant or not (unlikely to have
happened by chance alone or somewhat likely to have happened by chance alone) but you will also
report a p-value - the probability of your result or a more extreme result happening by chance alone
given that the null hypothesis is true. If you set an arbitrary cut-off for significance (5% say), and
your result has a p-value of 0.049, then it is significant while if it had a p-value of 0.051 it suddenly
ceases to be significant. Why should this be so? Reporting the p-value allows the reader to assess your
significance and make his own determination of the strength and/or suggestiveness of your results.
Reporting p-values is standard practice in most fields.

Assessing significance and p-values is slightly different for one-sided versus two-sided alternatives.
Here is an example. Suppose our alternative is that the mean of the treatment group is larger
than the mean of the control group (p, > p,). Let’s say we have a t-test statistic of ¢ = 2.0 and
the test has 10 degrees of freedom. The cut-off for significance at 5% is 1.81. Since our results is
larger, our test is significant, leading us to believe that the two means are not equal and that, in
fact, the mean of the treatment group is larger than the mean of the control group. Our p-value is
p(t(10d.f.) > 2.0) = 0.367. The following is a picture of this situation:

In the case of a two-sided alternative, where, in advance we did not know whether the treatment
would increase the measured variable or decrease it, we put half our significance in each tail. It is
harder to reject the null hypothesis of no difference between the means in this case because, a priori,
we did not know which side we should have been looking on. The 2-sided cut off for significance for
a t-test with 10 degrees of freedom is 2.23 and our result of £ = 2.0 is not significant. Our p-value is
p(|t(10d.f.)| > 2.0) = 2 x 0.367 = 0.734. We double the one-sided p-value because, a priori we did
not know which tail to look at. The following is a picture of this situation:

Robustness

There is another issue - robustness. A statistician calls a test robust if it is still approximately
valid when the assumptions on which it is based are not quite true.
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Figure 3.1: A pictorial representation of the rejection region for a one-sided t-test with 10 degrees of
freedom at the 5% significance level. A theoretical result from data of t=2.0 is depicted.

Density

Figure 3.2: A pictorial representation of the rejection region for a two-sided t-test with 10 degrees of
freedom at the 5% significance level. A theoretical result from data of t=2.0 is depicted.
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A test of whether two means are equal or not is conducted at the 5% significance level, say. What
this means is that, given all the assumptions of the test are true and the two means are indeed equal,
the test will reject the null hypothesis of equal means 5% of the time. All tests make mistakes and
the significance level is how often you allow this test to make a mistake.

A test is robust to a particular assumption if, when the assumption is invalid but all else holds,
including that the two means are equal, the test still rejects the null hypothesis approximately 5% of
the time - not much more or much less. This definition is vague - how invalid is the assumption and
what is much more or much less than 5%? Clearly there is a sliding scale here.

The pooled t-test is somewhat robust to the assumption of equal population standard deviations
but only when both sample sizes are the same (n, = n,). When the sample sizes are unequal and
the standard deviations are unequal, the pooled t-test can give very misleading results. One prefers
a robust test and Welch’s t-test provides a robust alternative to the pooled t-test. The issue of
robustness is explored using simulation, where you create data sets from known distributions over
and over again, apply the test statistic of interest, and record the outcomes. See the homework
problems for the next section.

Power

The significance level or type I error is the error associated with rejecting the null hypothesis
(of equal means in this case) when the null hypothesis is true. Another error associated with a test
is the type II error which is the error of accepting the null hypothesis when the null hypothesis is
false. Since what it means for two means not to be equal exists on a sliding scale, the type II error
is not only a function of the significance level of the test but also a function of how untrue the null
hypothesis is (the true, non-zero, difference of the two means relative to the standard error of the
test). The power of the test is one minus the type II error and is the probability of correctly rejecting
the null hypothesis when it is false. All else equal, we want the most powerful test possible. The
pooled t-test is slightly more powerful than Welch’s t-test when it assumptions are met - but the
difference is so slight that it is not, in my opinion, worth the risk of using the less robust pooled test.

Any decent software package will have a variety of t-tests pre-programmed for your use. Minitab
has them under Statistics > Basic Statistics > 2-Sample t... I will demonstrate the use of this menu
in class.
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Exercises for Lecture 3




